Informix Best Practices
Configuration, ONCONFIG, CPU and Memory Usage

Webcast – February 23, 2017
by
Lester Knutsen
Lester Knutsen is President of Advanced DataTools Corporation, and has been building large Data Warehouse and Business Systems using Informix Database software since 1983. Lester focuses on large database performance tuning, training and consulting. Lester is a member of the IBM Gold Consultant program and was presented with one of the Inaugural IBM Data Champion awards by IBM. Lester was one of the founders of the International Informix Users Group and the Washington Area Informix User Group.

lester@advanceddatatools.com
www.advanceddatatools.com
703-256-0267 x102
Overview

• CPU Recommendations and Best Practices
• Memory Recommendations and Best Practices
• ONCONFIG Recommendations and Best Practices
 – Basic Settings
 – Additional Key Settings
CPU – Central Processor Unit
Recommendations for Informix and Best Practices
CPU Terms

• Socket = One Chip or Processor
• Cores per Socket = How many cores run on a chip. A core only runs one process at a time.
• Hyper-Threads or SMT threads per Core = Many Cores have the ability to run multiple threads. No matter how many threads run on a Core, only one thread can run at a time on a core. Hyper-Threads will appear as additional Virtual Cores.
• Chip speed is measured in gigahertz (GHz); this is the speed of a single core of your processor.
• PVU - IBM Processor Value Unit = A unit of measure used to differentiate licensing of software
CPU Terms

- Example: 2 Sockets with 5 Cores and 2 Hyper-Threads per Core = 10 Cores and 20 Virtual Cores
- Can run 10 processes at the same time
Informix CPU Best Practices

• How many Cores will be allocated for Informix? What else is running on the machine?
• Traditional best practice is number of physical CPU Cores minus 1
• Current CPU Cores are fast enough to handle 2-3 oninit per Core or 1 oninit per 500-1000 MHz
CPU Usage Best Practices

• How busy are your CPUs?
• Tools to monitor:
 – sar –u, vmstat, mpstat, top, prstat
• Performance Guideline for Average CPU Usage:
 – < 30 % - Good
 – 30-60% - Fair
 – > 60% - Poor
• Save 60% of your CPU usage to handle Workload Spikes or you may not be able to handle busy loads
Hyper-Threads or SMT Threads

• Hyper-Threads and SMT Threads may not be helpful to Informix oninit process

• Example:

Informix on AIX. Each AIX Core has 4 SMT threads, each displaying as a CPU; only the first thread is busy, the rest are idle.
Hyper-Threads or SMT Threads Best Practices

- Test, Test and Test again; don’t assume that more Hyper-Threads or SMT threads are better. Your workload will determine what is best.
- AIX – Try 2 SMT threads per Core on Power6 and Power7, 4 SMT on Power8
- Intel – Try 2 Oninits per Core instead of 2 Hyper-Threads and 1 Oninit per Hyper-Thread
Informix Architecture

Informix Best Practices

Advanced DataTools
Oninit Process

informix@train6:~ train6 > ps -ef | grep oninit
informix 22472 1 9 14:03 ? 00:00:03 oninit -v
root 22473 22472 0 14:03 ? 00:00:00 oninit -v
root 22474 22473 0 14:03 ? 00:00:00 oninit -v
root 22475 22473 0 14:03 ? 00:00:00 oninit -v
root 22476 22473 0 14:03 ? 00:00:00 oninit -v
root 22477 22473 0 14:03 ? 00:00:00 oninit -v
root 22478 22473 0 14:03 ? 00:00:00 oninit -v
root 22479 22473 0 14:03 ? 00:00:00 oninit -v
Oninit Process

onstat –g sch

Informix Best Practices

IBM Informix Dynamic Server Version 12.10.FC6 -- On-Line -- Up 00:02:12 -- 766404 Kbytes

VP Scheduler Statistics:

<table>
<thead>
<tr>
<th>vp</th>
<th>pid</th>
<th>class</th>
<th>semops</th>
<th>busy waits</th>
<th>spins/wait</th>
<th>bsy lspins</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22472</td>
<td>cpu</td>
<td>141</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>22473</td>
<td>adm</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>22474</td>
<td>lio</td>
<td>4115</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>22475</td>
<td>pio</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>22476</td>
<td>aio</td>
<td>7453</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>22477</td>
<td>msc</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>22478</td>
<td>fifo</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>22479</td>
<td>soc</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>22480</td>
<td>aio</td>
<td>2890</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>22481</td>
<td>aio</td>
<td>187</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>22482</td>
<td>aio</td>
<td>113</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>22483</td>
<td>aio</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>22484</td>
<td>aio</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>22485</td>
<td>aio</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>22486</td>
<td>aio</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>22487</td>
<td>aio</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>22489</td>
<td>aio</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Oninit Process Classes

- CPU - Executes all user and session threads and some system threads
- PIO - Handles physical log file when cooked disk space is used
- LIO - Handles logical log file when cooked disk space is used
- AIO - Handles disk I/O
- SHM - Performs shared memory communications
- TLI - Performs TLI network communications
- SOC - Performs socket network communications
- FIFO - Performs FIFO operations
- OPT - Handles optical disk I/O
- ADM - Executes administrative threads
- ADT - Executes auditing threads
- MSC - Handles request for system calls
Oninit Process
Automatically Started

• Started Automatically
 – PIO - Handles physical log file when cooked disk space is used
 – LIO - Handles logical log file when cooked disk space is used
 – FIFO - Performs FIFO operations
 – ADM - Executes administrative threads
 – MSC - Handles request for system calls

• Started when Auditing is on
 – ADT - Executes auditing threads

• Started when UDRs are called
 – Java
 – User Defined Functions
Oninit Process Controlled by VPCLASS

• ONCONFIG VPCLASS Setting
 – CPU - Executes all user and session threads and some system threads
 – AIO - Handles disk I/O
VPCLASS Options

The VPCLASS parameter allows you to:

• Designate a class of virtual processors (VPs)
• Create a user-defined VP, and specify the following information for it:
 – The number of virtual processors that the database server should start initially - optional
 – The maximum number of virtual processors allowed for this class - optional
 – The assignment of virtual processors to CPUs if processor affinity is available - optional
 – The disabling of priority aging by the operating system if the operating system implements priority aging - optional

Syntax:
• VPCLASS classname, options
CPU Oninit Configuration

• VPCLASS CPU – Configure the number of Oninit CPU VPs to start for Informix
 – VPCLASS cpu,num=<number> [,max=<max number cpu>] [,aff=<single CPU number> | <start cpu>-<end cpu> | (<start cpu>-<end cpu>/<skip amount>)]] [,noage]

• Examples for 8 Core machine:
 – VPCLASS cpu,num=4,noage
 – VPCLASS cpu,num=8,noage
 – VPCLASS cpu,num=8,aff=0,noage
 – VPCLASS cpu,num=8,aff=1-4,noage
CPU Affinity

• Example:
 – VPCLASS cpu,num=4,aff=0-3,noage

Message in the Online Log:
15:33:12 Affinitied VP 8 to phys proc 1
15:33:12 Affinitied VP 9 to phys proc 2
15:33:12 Affinitied VP 10 to phys proc 3
15:33:12 Affinitied VP 1 to phys proc 0
Additional CPU Best Practices

• Set MULTIPROCESSOR to 1 (Almost all machines today are multiprocessor)
• Set SINGLE_CPU_VP to 0 (Allows you to run more Oninits of CPU class as needed)
• Set NOAGE if your OS supports it
Additional CPU Best Practices

- Set VP_MEMORY_CACHE_KB <size in KB for private cache for each CPU VP>
- Format is: <size>[,DYNAMIC|STATIC]
 Acceptable values for <size> are: 0 (disable) or 800 through 40% of the value of SHMTOTAL
- Example:
 - VP_MEMORY_CACHE_KB 4096
AIO Oninit Best Practices

• Default is
 – AUTO_AIOVPS 1 – enable automatically adding AIO VPs as needed
 – This can lead to *too many* AIO VPs writing to the same disk system

• Recommended
 – AUTO_AIOVPS 0
 – VPCLASS aio,num=<number of oninits you need to write to disk>
AIO Oninit Best Practices

• How many AIO Class Oninits do you need? Test, Test, Test…
 – With KAIO on – only need 2 AIO oninit
 – With KAIO off (default), it depends on how many processes can write to a disk at the same time.
 – Never need more than twice the number of active chunks.
 – Most disks can handle up to 8 AIO oninit processes.
AIO Oninit Best Practice Examples

- 1 Disk and 24 Chunks
 - VPCLASS aio,num=8
- 6 Disks and 24 Chunks (12 active)
 - VPCLASS aio,num=24
Oninit Processes Controlled by NETTYPE

• ONCONFIG NETTYPE Setting
 – SHM - Performs shared memory communications
 – TLI - Performs TLI network communications
 – SOC - Performs socket network communications
NETTYPE Configuration

- NETTYPE <protocol>,<number of oninit process>, <number of connections per oninit>, <Type of Oninit – CPU or NET>

- Examples:
 - NETTYPE ipcshm,1,50,CPU
 - NETTYPE soctcp,4,250,NET
NETTYPE Configuration

Best Practices

• Configure Shared Memory Connection to run on NETTYPE type CPU and Network Connections to run on NETTYPE NET.

• Configure 200-300 Connections per Oninit process.

• Example:
 – NETTYPE ipcshm,1,50,CPU – Shared Memory with 50 connections
 – NETTYPE soctcp,4,250,NET – Network with 1000 connections
Memory Recommendations for Informix and Best Practices
Informix Memory Best Practices

• How much memory is available on the machine?
• How much is used by the Operating System and other applications?
• How much will be assigned to Informix?
• **DO NOT allow the machine to Swap memory to disk as this will SLOW everything down**
Informix Memory Classes

- R – Resident Memory Segment
- B – Buffer Pool Segment for data
- V – Virtual Memory Segment for Working Storage
- M – Message Segment for communications between clients
Informix Shared Memory

- Resident Memory Segment:
 - Control Tables
 - Buffers

- Virtual Memory Segment:
 - Dictionary cache
 - Working Storage
 - Sort Space

- Message Memory Segment
Informix Shared Memory
onstat -g seg

informix@train6:~ train6 > onstat -g seg

IBM Informix Dynamic Server Version 12.10.FC6 -- On-Line -- Up 00:30:00 -- 766404 Kbytes

Segment Summary:

<table>
<thead>
<tr>
<th>id</th>
<th>key</th>
<th>addr</th>
<th>size</th>
<th>ovhd</th>
<th>class</th>
<th>blkused</th>
<th>blkfree</th>
</tr>
</thead>
<tbody>
<tr>
<td>32769</td>
<td>525c4801</td>
<td>44000000</td>
<td>4911104</td>
<td>495784</td>
<td>R</td>
<td>1199</td>
<td>0</td>
</tr>
<tr>
<td>65538</td>
<td>525c4802</td>
<td>444af000</td>
<td>33439744</td>
<td>393384</td>
<td>V</td>
<td>8030</td>
<td>134</td>
</tr>
<tr>
<td>98307</td>
<td>525c4803</td>
<td>46493000</td>
<td>562749440</td>
<td>1</td>
<td>B</td>
<td>137390</td>
<td>0</td>
</tr>
<tr>
<td>131076</td>
<td>525c4804</td>
<td>67d41000</td>
<td>166359040</td>
<td>1</td>
<td>B</td>
<td>40615</td>
<td>0</td>
</tr>
<tr>
<td>163845</td>
<td>525c4805</td>
<td>71be8000</td>
<td>561152</td>
<td>7848</td>
<td>M</td>
<td>136</td>
<td>1</td>
</tr>
<tr>
<td>196614</td>
<td>525c4806</td>
<td>71c71000</td>
<td>8388608</td>
<td>99720</td>
<td>V</td>
<td>1529</td>
<td>519</td>
</tr>
<tr>
<td>294919</td>
<td>525c4807</td>
<td>72471000</td>
<td>8388608</td>
<td>99720</td>
<td>V</td>
<td>25</td>
<td>2023</td>
</tr>
<tr>
<td>Total:</td>
<td>-</td>
<td>-</td>
<td>784797696</td>
<td>-</td>
<td>-</td>
<td>188924</td>
<td>2677</td>
</tr>
</tbody>
</table>

(* segment locked in memory)
No reserve memory is allocated
ONCONFIG Memory Configuration Settings

- BUFFERPOOL
- SHMVIRTSIZE
- SHMADD
- LOCKS
BUFFERPOOL Best Practices

• More Buffers - the better and faster your database will perform.
• Goal is to put all the active data into Memory Buffers.
• Goal is to prevent high Memory Buffers Turnover (Art Kagel’s rule – less than 8 times and hour).
• Always leave the default BUFFERPOOL line in the ONCONFIG.
BUFFERPOOL Settings

• The BUFFERPOOL configuration parameter consists of two lines in the onconfig.std file, as shown in this example for a UNIX platform:

 BUFFERPOOL default,lrus=8,buffers=5000,lru_min_dirty=50,lru_max_dirty=60
 BUFFERPOOL size=2K,buffers=5000,lrus=8,lru_min_dirty=50,lru_max_dirty=60

• The top line specifies the default values that are used if you create a dbspace with a page size that does not already have a corresponding buffer pool created at startup.

• The next line below the default line specifies the database server's default values for a buffer pool, which are based on the database server's default page size.

• When you add a dbspace with a different page size with the onspaces utility, or when you add a new buffer pool with the onparams utility, a new line is appended to the BUFFERPOOL configuration parameter in the ONCONFIG file. The page size for each buffer pool must be a multiple of the system's default page size.
BUFFERPOOL Examples

- 3 GB Memory for Buffers – Linux OLTP System
 - BUFFERPOOL size=2k, buffers=1500000, lrus=32, lru_min_dirty=10, lru_max_dirty=20

- 12 GB Memory for Buffers – AIX OLTP System
 - BUFFERPOOL size=4k, buffers=3000000, lrus=128, lru_min_dirty=1, lru_max_dirty=2

- 48 GB Memory for Buffers – Solaris Data Warehouse
 - BUFFERPOOL size=2K, buffers=24000000, lrus=128, lru_min_dirty=60, lru_max_dirty=70

- 15 GB Memory for 4K Buffers and 12.8 GB for 16K Buffers
 - BUFFERPOOL size=4K, buffers=60000000, lrus=256, lru_min_dirty=0.1, lru_max_dirty=0.2
 - BUFFERPOOL size=16K, buffers=800000, lrus=256, lru_min_dirty=20, lru_max_dirty=30
Monitoring BUFFERPOOL Turnover

--- Module: @(buff_btr_ratio.sql 2.0 Date: 2013/04/10
--- Author: Lester Knutsen Email: lester@advanceddatatools.com
--- Advanced DataTools Corporation
--- Description: Display Buffer Turnovers per hour
--- Based on Art Kagels performance tuning tips on monitoring how much buffer churn your server has.
--- Goal is BTR of less than 7 times per hour
--- Tested with Informix 11.70 and Informix 12.10

select
 bufsz, pagreads, bufwrites, nbuffs,
 (((pagreads + bufwrites) / nbuffs) /
 (select (ROUND (((sh_curtime - sh_pfclrtime)/60)/60))
 from sysshmvals)) BTR
from sysbufpool;
Informix Shared Memory Management

- Resident Memory Segment
 - LRU
 - Page
 - Control Tables
 - Buffers

- Virtual Memory Segment
 - Dictionary cache
 - Working Storage
 - Sort Space

- Message Memory Segment
Page Gets Read into Memory by a Select

Resident Memory Segment
- Control Tables
- Buffers

Virtual Memory Segment
- Dictionary cache
- Working Storage
- Sort Space

Message Memory Segment

Informix Best Practices
When all Buffers are full, Least Recently Used (LRU) Page is discarded to make room for more data.

- Resident Memory Segment
 - Control Tables
 - Buffers

- Virtual Memory Segment
 - Dictionary cache
 - Working storage
 - Sort Space

- Message Memory Segment
When a user updates a page, it is marked as dirty and must be written out to disk before it is discarded.

Resident Memory Segment
- Control Tables
- Buffers

Virtual Memory Segment
- Dictionary cache
- Working storage
- Sort Space

Message Memory Segment
LRU Queues manage writing data to disk in the background when there is idle time based on LRU_MAX_DIRTY and LRU_MIN_DIRTY ONCONFIG values.
When all buffers are Dirty, the server must STOP all processing and perform a Foreground Write.

Resident Memory Segment
- Control Tables
- Buffers

Virtual Memory Segment
- Dictionary cache
- Working Storage
- Sort Space

Message Memory Segment
When a buffer is written to disk, it is marked as clean and may be discarded if needed.
Checkpoint writes all Dirty Buffers to Disk.

Resident Memory Segment
- Control Tables
- Buffers

Virtual Memory Segment
- Dictionary cache
- Working Storage
- Sort Space

Message Memory Segment
After a Checkpoint, all Buffers are clean and the cycle starts over again.

- Resident Memory Segment
 - Control Tables
 - Buffers

- Virtual Memory Segment
 - Dictionary cache
 - Working storage
 - Sort Space

- Message Memory Segment
Memory LRU Settings

• AUTO_LRU_TUNING - Enables (1) or disables (0)

• BUFFERPOOL LRU Settings
 – lrus=<Number of LRU QUEUES>,
 – lru_max_dirty=<Percent dirty to START cleaning>
 – lru_min_dirty=<Percent dirty to STOP cleaning>
Memory LRU Best Practices

- Enable AUTO_LRU_TUNING for turnkey or embedded systems.
- Disable AUTO_LRU_TUNING for high performance systems where you do not want CHECKPOINTS to write a huge amount of data to disk and slow everything down.
Memory LRU Settings

- LRU Settings for AUTO_LRU_TUNING Disabled
 - lrus=<Number of LRU QUEUES>,
 - lru_max_dirty=<Percent dirty to START cleaning>
 - lru_min_dirty=<Percent dirty to STOP cleaning>
SHMVIRTSIZE Best Practices

• Controls the size of the Informix Virtual Memory Workspace, which can grow if needed.

• Best practice is to set it large enough so it does not need to grow.
 – Monitor with onstat --g seg
Informix Shared Memory
onstat –g seg

informix@train6:~ train6 > onstat –g seg

IBM Informix Dynamic Server Version 12.10.FC6 -- On-Line -- Up 00:30:00 -- 766404 Kbytes

Segment Summary:

<table>
<thead>
<tr>
<th>id</th>
<th>key</th>
<th>addr</th>
<th>size</th>
<th>ovhd</th>
<th>class</th>
<th>blkused</th>
<th>blkfree</th>
</tr>
</thead>
<tbody>
<tr>
<td>32769</td>
<td>525c4801</td>
<td>44000000</td>
<td>4911104</td>
<td>495784</td>
<td>R</td>
<td>1199</td>
<td>0</td>
</tr>
<tr>
<td>65538</td>
<td>525c4802</td>
<td>444af000</td>
<td>33439744</td>
<td>393384</td>
<td>V</td>
<td>8030</td>
<td>134</td>
</tr>
<tr>
<td>98307</td>
<td>525c4803</td>
<td>46493000</td>
<td>562749440</td>
<td>1</td>
<td>B</td>
<td>137390</td>
<td>0</td>
</tr>
<tr>
<td>131076</td>
<td>525c4804</td>
<td>67d41000</td>
<td>166359040</td>
<td>1</td>
<td>B</td>
<td>40615</td>
<td>0</td>
</tr>
<tr>
<td>163845</td>
<td>525c4805</td>
<td>71be8000</td>
<td>561152</td>
<td>7848</td>
<td>M</td>
<td>136</td>
<td>1</td>
</tr>
<tr>
<td>196614</td>
<td>525c4806</td>
<td>71c71000</td>
<td>8388608</td>
<td>99720</td>
<td>V</td>
<td>1529</td>
<td>519</td>
</tr>
<tr>
<td>294919</td>
<td>525c4807</td>
<td>72471000</td>
<td>8388608</td>
<td>99720</td>
<td>V</td>
<td>25</td>
<td>2023</td>
</tr>
<tr>
<td>Total:</td>
<td>-</td>
<td>-</td>
<td>784797696</td>
<td>-</td>
<td>-</td>
<td>188924</td>
<td>2677</td>
</tr>
</tbody>
</table>

(* segment locked in memory)
No reserve memory is allocated
Additional Memory Setting

• RESIDENT - Controls whether shared memory is resident. Acceptable values are:
 – 0 off (default)
 – 1 lock the resident segment only
 – n lock the resident segment and the next n-1 virtual segments, where n < 100
 – -1 lock all resident and virtual segments

• SHMADD - The size, in KB, of additional virtual shared memory segments
LOCKS Memory Settings

• LOCKS – The number of LOCKS when Informix Starts. This determines the amount of Memory initially set for LOCKS. Can be dynamically added when needed.

• Dynamically adding LOCKS can cause a performance degradation.
LOCKS Memory Settings

• To monitor, look at the last line of:
 – onstat –k

 This shows 2 lock table overflows.
 – This system requires 80,000 locks.
LOCK Best Practices

• LOCK Table Overflows will slow performance and should be avoided.
• LOCK Table Overflows are a major contributor to SHMVIRT Memory additions.
• Set your LOCK setting to a value that is the largest number required.
Informix ONCONFIG File Recommendations and Best Practices
Basic Informix ONCONFIG Setup and Configuration

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOTPATH</td>
<td>/PATH/rootdbs</td>
</tr>
<tr>
<td>ROOTSIZE</td>
<td>400000</td>
</tr>
<tr>
<td>MSGPATH</td>
<td>/PATH/trainX_online.log</td>
</tr>
<tr>
<td>CONSOLE</td>
<td>/PATH/trainX_console.log</td>
</tr>
<tr>
<td>TAPEDEV</td>
<td>/dev/null</td>
</tr>
<tr>
<td>LTAPEDEV</td>
<td>/dev/null</td>
</tr>
<tr>
<td>SERVERNUM</td>
<td><Your Server number goes here></td>
</tr>
<tr>
<td>DBSERVERNAME</td>
<td><Informix Server Name></td>
</tr>
<tr>
<td>DBSERVERALIASES</td>
<td><Informix Server Alias Name></td>
</tr>
<tr>
<td>NETTYPE</td>
<td>ipcshm,1,50,CPU</td>
</tr>
<tr>
<td>NETTYPE</td>
<td>soctcp,1,50,NET</td>
</tr>
</tbody>
</table>
Basic Informix ONCONFIG Setup and Configuration

• ROOTPATH – full path location to your rootdbs
 – ROOTPATH /informixchunks/train1/rootdbs
• ROOTSIZE – Size of your rootdbs in KB
 – ROOTSIZE 2000000
• File must be owned by Informix and belong to the Informix group
• File Permissions must be read/write by user and group Informix only
Basic Informix ONCONFIG Setup and Configuration

• MSGPATH – Full path to the location of the Informix Message log file
 – MSGPATH $INFORMIXDIR/train1_online.log

• CONSOLE – Full path to the location of the Informix Console log file
 – CONSOLE $INFORMIXDIR/train1_console.log
Basic Informix ONCONFIG Setup and Configuration

• Set Ontape Backups to a directory
 – TAPEDEV /home/informix/backups/servername/archive
 – LTAPEDEV /home/informix/backups/servername/logs

• Directory must be owned by Informix and belong to the Informix group

• Permissions must be read/write by user and group Informix only
Basic Informix ONCONFIG Setup and Configuration

- SERVERNUM – Must be a unique number for each instance on a machine
- DBSERVERNAME – the Server Name
 - The connections INFORMIXSERVER
- DBSERVERALIAS – the Server Alias Name for other (Network Connections)
 - The connections INFORMIXSERVER
Basic Informix ONCONFIG Setup and Configuration

- NETTYPE – The Network settings for your Server – See Slide 26-27
Disk Space Configuration

- Root DBspace
- Physical Log DBspace
- Logical Logs Dbspace
- Temp Dbspace
- Data Dbspace
- Index DBspace
ONCONFIG Setting

• The following are some Critical ONCONFIG File Settings to Review
ONCONFIG - Root DBspace

Root Dbspace Configuration Parameters

ROOTNAME - The root dbspace name to contain reserved pages and internal tracking tables.
ROOTPATH - The path for the device containing the root dbspace
ROOTOFFSET - The offset, in KB, of the root dbspace into the device. The offset is required for some raw devices.
ROOTSIZE - The size of the root dbspace, in KB. The value of 200000 allows for a default user space of about 100 MB and the default system space requirements.
MIRROR - Enable (1) or disable (0) mirroring
MIRRORPATH - The path for the device containing the mirrored root dbspace
MIRROROFFSET - The offset, in KB, into the mirrored device

Warning: Always verify ROOTPATH before performing disk initialization (oninit -i or -iy) to avoid disk corruption of another instance

Root Dbspace Configuration Parameters

ROOTNAME rootdbs
ROOTPATH /informixchunks/rootdbs
ROOTOFFSET 0
ROOTSIZE 200000
MIRROR 1
MIRRORPATH /informixchunks/rootdbsM
MIRROROFFSET 0
ONCONFIG - Physical Log

Physical Log Configuration Parameters

PHYSFILE - The size, in KB, of the physical log on disk.
If RTO_SERVER_RESTART is enabled, the
suggested formula for the size of PHYSFILE
(up to about 1 GB) is:
PHYSFILE = Size of BUFFERS * 1.1
PLOG_OVERFLOW_PATH - The directory for extra physical log files
if the physical log overflows during recovery
or long transaction rollback
PHYSBUFF - The size of the physical log buffer, in KB

PHYSFILE 50000
PLOG_OVERFLOW_PATH $INFORMIXDIR/tmp
PHYSBUFF 128
ONCONFIG - Logical Log

Logical Log Configuration Parameters

LOGFILES - The number of logical log files
LOGSIZE - The size of each logical log, in KB
DYNAMIC_LOGS - The type of dynamic log allocation.
Acceptable values are:
2 Automatic. IDS adds a new logical log to the
root dbspace when necessary.
1 Manual. IDS notifies the DBA to add new logical
logs when necessary.
0 Disabled
LOGBUFF - The size of the logical log buffer, in KB

LOGFILES 6
LOGSIZE 10000
DYNAMIC_LOGS 2
LOGBUFF 64

Informix Best Practices
ONCONFIG - Long Transactions

Long Transaction Configuration Parameters

If IDS cannot roll back a long transaction, the server hangs
until more disk space is available.
LTXHWM - The percentage of the logical logs that can be filled before a
transaction is determined to be a long transaction and is rolled back
LTXEHWM - The percentage of the logical logs that have been filled before the
server suspends all other transactions so that the long transaction being rolled back
has exclusive use of the logs
When dynamic logging is on, you can set higher values for LTXHWM and LTXEHWM because the
server can add new logical logs during long transaction rollback. Set lower values to
limit the number of new logical logs added.
If dynamic logging is off, set LTXHWM and LTXEHWM to lower values, such as 50 and 60 or
lower, to prevent long transaction rollback from hanging the server due to lack of
logical log space.
When using Enterprise Replication, set LTXEHWM to at least 30%
higher than LTXHWM to minimize log overruns.

NOTE: The new default is LTXHWM 70, LTXEHWM 80 – I recommend using the following values
LTXHWM 50
LTXEHWM 60
ONCONFIG - Server Name and Aliases

System Configuration Parameters

SERVERNUM - The unique ID for the IDS instance. Acceptable
values are 0 through 255, inclusive.
DBSERVERNAME - The name of the default database server
DBSERVERALIASES - The list of up to 32 alternative dbservernames,
separated by commas

SERVERNUM 1
DBSERVERNAME train
DBSERVERALIASES train2_tcp/3, train_drda

Following a soctcp connection name with a slash and a number causes the engine to start that number of
listener threads for this port. The default is a single listener thread.
ONCONFIG - CPU

Configuration

CPU-Related Configuration Parameters

MULTIPROCESSOR - Specifies whether the computer has multiple CPUs. Acceptable values are: 0 (single processor), 1 (multiple processors or multi-core chips)

VPCLASS cpu - Configures the CPU VPs. The format is:
VPCLASS cpu,num=<#>[,max=<#>][,aff=<#>] [,noage]

VP_MEMORY_CACHE_KB - Specifies the amount of private memory blocks of your CPU VP, in KB, that the database server can access. Acceptable values are:
0 (disable)
800 through 40% of the value of SHMTOTAL

SINGLE_CPU_VP - Optimizes performance if IDS runs with only one CPU VP. Acceptable values are:
0 multiple CPU VPs
Any nonzero value (optimize for one CPU VP)

MULTIPROCESSOR 0
VPCLASS cpu,num=1,noage
VP_MEMORY_CACHE_KB 0
SINGLE_CPU_VP 1
ONCONFIG - Network Connections

NETTYPE - The configuration of poll threads
for a specific protocol. The format is:
NETTYPE <protocol>,<# poll threads>
,<number of connections/thread>,(NET|CPU)
You can include multiple NETTYPE
entries for multiple protocols.
LISTEN_TIMEOUT - The number of seconds that IDS
waits for a connection
MAX_INCOMPLETE_CONNECTIONS - The maximum number of incomplete
connections before IDS logs a Denial
of Service (DoS) error
FASTPOLL - Enables (1) or disables (0) fast
polling of your network, if your
operating system supports it.
NS_CACHE - The number of seconds for IDS name service cache
(host, service, user, group) expiration time.
0 to disable cache.

NETTYPE ipcshm,1,50,CPU
NETTYPE soctcp,1,50,NET
LISTEN_TIMEOUT 60
MAX_INCOMPLETE_CONNECTIONS 1024
FASTPOLL 1
NS_CACHE host=900,service=900,user=900,group=900
ONCONFIG - Checkpoints and Recover

Checkpoint and System Block Configuration Parameters

CKPINTVL - Specifies how often, in seconds, IDS checks
if a checkpoint is needed. 0 indicates that
IDS does not check for checkpoints. Ignored
if RTO_SERVER_RESTART is set.
AUTO_CKPTS - Enables (1) or disables (0) monitoring of
critical resource to trigger checkpoints
more frequently if there is a chance that
transaction blocking might occur.
RTO_SERVER_RESTART - Specifies, in seconds, the Recovery Time
Objective for IDS restart after a server
failure. Acceptable values are 0 (off) and
any number from 60-1800, inclusive.
BLOCKTIMEOUT - Specifies the amount of time, in seconds,
for a system block.

CKPTINTVL 300
AUTO_CKPTS 1
RTO_SERVER_RESTART 0
BLOCKTIMEOUT 3600
ONCONFIG – Auto Tune

AUTO_TUNE - The value of this parameter serves as the default value for
the following AUTO_* parameters:
AUTO_AIOVPS
AUTO_CKPTS
AUTO_REPREPARE
AUTO_STAT_MODE
AUTO_READAHEAD
AUTO_LRU_TUNING
#
Any of the above parameters that are not present in your config file
will default to the value of AUTO_TUNE, which can be set to either 0 or 1.
If an AUTO_* parameter is set in your config file, the given value overrides
that of AUTO_TUNE. Information on individual AUTO_* parameters is below.
#
ONCONFIG – Auto Tune

AUTO_LRU_TUNING - Enables (1) or disables (0) automatic LRU tuning, which
adjusts flushing thresholds for individual buffer pools
if the server discovers they are sub-optimal
AUTO_AIOVPS - Enables (1) or disables (0) automatic management
of AIO VPs
AUTO_CKPTS - Enables (1) or disables (0) monitoring of
critical resource to trigger checkpoints
more frequently if there is a chance that
transaction blocking might occur.
AUTO_REPREPARE - Enables (1) or disables (0) automatically
re-optimizing stored procedures and re-preparing
prepared statements when tables that are referenced
by them change. Minimizes the occurrence of the
-710 error.
AUTO_STAT_MODE - Enables (1) or disables (0) update statistics
automatic mode. In automatic mode, statistics of
table, fragment or index are rebuilt only if existing
statistics are considered stale. A table, fragment
or index can change by STATCHANGE percentage before
its statistics are regarded as stale.
ONCONFIG – Auto Tune

RA_PAGES & RA_THRESHOLD have been replaced with AUTO_READAHEAD.
AUTO_READAHEAD mode[,readahead_cnt]
mode 0 = Disable (Not recommended)
1 = Passive (Default)
2 = Aggressive (Not recommended)
readahead_cnt Optional Range 4-4096
readahead_cnt allows for tuning the of
pages that automatic readahead will request
to be read ahead. When not set, the default
is 128 pages.
Notes:
The threshold for starting the next readahead request, which
used to be known as RA_THRESHOLD, is always set to 1/2 of the
readahead_cnt. RA_THRESHOLD is deprecated and no longer used.
If RA_PAGES & AUTO_READAHEAD are not present in the ONCONFIG file,
AUTO_READAHEAD will default to the value of AUTO_TUNE.
If RA_PAGES is present in the ONCONFIG file and AUTO_READAHEAD is
not, the server will set AUTO_READAHEAD to AUTO_TUNE,RA_PAGES
ONCONFIG - Transactions

#--
Transaction-Related Configuration Parameters
#--
TXTIMEOUT - The distributed transaction timeout, in seconds
DEADLOCK_TIMEOUT - The maximum time, in seconds, to wait for a
lock in a distributed transaction.
HETERO_COMMIT - Enables (1) or disables (0) heterogeneous
commits for a distributed transaction
involving an EGM gateway.
#--
TXTIMEOUT 300
DEADLOCK_TIMEOUT 60
HETERO_COMMIT 0
ONCONFIG - Disk I/O

###
AIO and Cleaner-Related Configuration Parameters
###
VPCLASS aio - Configures the AIO VPs. The format is:
VPCLASS aio,num=<#>[,max=<#>][,aff=<#>][,noage]
CLEANERS - The number of page cleaner threads
AUTO_AIOVPS - Enables (1) or disables (0) automatic management of AIO VPs
DIRECT_IO - Specifies whether direct I/O is used for cooked files used for dbspace chunks.
Acceptable values are:
0 Disable
1 Enable direct I/O
2 Enable concurrent I/O – AIX Only

#VPCLASS aio,num=1
CLEANERS 8
AUTO_AIOVPS 1
DIRECT_IO 1
ONCONFIG - Table Space

Tblspace Configuration Parameters

TBLTBLFIRST - The first extent size, in KB, for the tblspace
tblspace. Must be in multiples of the page size.
TBLTBLNEXT - The next extent size, in KB, for the tblspace
tblspace. Must be in multiples of the page size.
The default setting for both is 0, which allows IDS to manage
extent sizes automatically.
#
TBLSPACE_STATS - Enables (1) or disables (0) IDS to maintain
tblspace statistics

TBLTBLFIRST 0
TBLTBLNEXT 0
TBLSPACE_STATS 1
ONCONFIG - Temp Space

Temporary dbspace and sbspace Configuration Parameters

DBSPACETEMP - The list of dbspaces used to store temporary
tables and other objects. Specify a colon
separated list of dbspaces that exist when the
server is started. If no dbspaces are specified,
or if all specified dbspaces are not valid,
temporary files are created in the /tmp directory
instead.
SBSPACETEMP - The list of sbspaces used to store temporary
tables for smart large objects. If no sbspace
is specified, temporary files are created in
a standard sbspace.

DBSPACETEMP tmp1dbs:tmp2dbs:tmp3dbs:non_temp_space1:non_temp_space2
SBSPACETEMP tmp1sbdbs:tmp2sbdbs:tmp3sbdbs
TEMPTAB_NOLOG 1
ONCONFIG - Sbspace and DbSpace

Dbspace and sbspace Configuration Parameters

SBSPACENAME - The default sbspace name where smart large objects
are stored if no sbspace is specified during
smart large object creation. Some DataBlade
modules store smart large objects in this
location.
SYSSBSPACENAME - The default sbspace for system statistics
collection. Otherwise, IDS stores statistics
in the sysdistrib system catalog table.
ONDBSPACEDOWN - Specifies how IDS behaves when it encounters a
dbspace that is offline. Acceptable values
are:
0 Continue
1 Stop
2 Wait for DBA action

SBSPACENAME sbspacedbs
SYSSBSPACENAME dbo.spacedbs
ONDBSPACEDOWN 2
ONCONFIG - PDQ Setup

Parallel Database Query (PDQ) Configuration Parameters

MAX_PDQPRIORITY - The maximum amount of resources, as a percentage, that PDQ can allocate to any one decision support query
DS_MAX_QUERIES - The maximum number of concurrent decision support queries
DS_TOTAL_MEMORY - The maximum amount, in KB, of decision support query memory
DS_MAX_SCANS - The maximum number of concurrent decision support scans
DS_NONPDQ_QUERY_MEM - The amount of non-PDQ query memory, in KB. Acceptable values are 128 to 25% of DS_TOTAL_MEMORY.
DATASKIP - Specifies whether to skip dbspaces when processing a query. Acceptable values are:
 # - ALL Skip all unavailable fragments
 # - ON <dbspace1> <dbspace2>... Skip listed dbspaces
 # - OFF Do not skip dbspaces (default)

MAX_PDQPRIORITY 100
DS_MAX_QUERIES
DS_TOTAL_MEMORY
DS_MAX_SCANS 1048576
DS_NONPDQ_QUERY_MEM 128
DATASKIP
ONCONFIG - Optimizer Setup

Optimizer Configuration Parameters

OPTCOMPIND - Controls how the optimizer determines the best query path. Acceptable values are:
0 Nested loop joins are preferred
1 If isolation level is repeatable read, works the same as 0, otherwise works same as 2
2 Optimizer decisions are based on cost only

DIRECTIVES - Specifies whether optimizer directives are enabled (1) or disabled (0). Default is 1.

EXT_DIRECTIVES - Controls the use of external SQL directives. Acceptable values are:
0 Disabled
1 Enabled if the IFX_EXTDIRECTIVES environment variable is enabled
2 Enabled even if the IFX_EXTDIRECTIVES environment is not set
Optimizer Setup - continued

OPT_GOAL - Controls how the optimizer should optimize for fastest retrieval. Acceptable values are:
-1 All rows in a query
0 The first rows in a query
IFX_FOLDVIEW - Enables (1) or disables (0) folding views that have multiple tables or a UNION ALL clause.
Disabled by default.
AUTO_REPREPARE - Enables (1) or disables (0) automatically re-optimizing stored procedures and re-preparing prepared statements when tables that are referenced by them change. Minimizes the occurrence of the -710 error.

OPTCOMPIND 2
DIRECTIVES 1
EXT_DIRECTIVES 0
OPT_GOAL -1
IFX_FOLDVIEW 0
AUTO_REPREPARE 1
ONCONFIG - Dump Setup

Diagnostic Dump Configuration Parameters

DUMPDIR - The location Assertion Failure (AF) diagnostic files
files
DUMPSHMEM - Controls shared memory dumps. Acceptable values
are:
0 Disabled
1 Dump all shared memory
2 Exclude the buffer pool from the dump
DUMPGCORE - Enables (1) or disables (0) whether IDS dumps a
core using gcore
DUMPCORE - Enables (1) or disables (0) whether IDS dumps a
core after an AF
DUMPCNT - The maximum number of shared memory dumps or
core files for a single session

DUMPDIR ${INFORMIXDIR}/tmp
DUMPSHMEM 1
DUMPGCORE 0
DUMPCORE 0
DUMPCNT 1
ONCONFIG - Alarm Program Setup

Alarm Program Configuration Parameters

ALARMPROGRAM - Specifies the alarm program to display event alarms. To enable automatic logical log backup, edit alarmprogram.sh and set BACKUPLOGS=Y.
ALRM_ALL_EVENTS - Controls whether the alarm program runs for every event. Acceptable values are:
0 Logs only noteworthy events
1 Logs all events
STORAGE_FULL_ALARM - <time interval in seconds>,<alarm severity>
specifies in what interval:
- a message will be printed to the online.log file
- an alarm will be raised
when
- a dbspace becomes full
(ISAM error -131)
- a partition runs out of pages or extents
(ISAM error -136)
time interval = 0 : OFF
severity = 0 : no alarm, only message
SYSALARMPROGRAM - Specifies the system alarm program triggered when an AF occurs

Informix Best Practices

Advanced DataTools
Alarm Program Setup

ALARMPROGRAM $INFORMIXDIR/etc/log_full.sh
ALRM_ALL_EVENTS 1
STORAGE_FULL_ALARM 600,3
SYSALARMPROGRAM $INFORMIXDIR/etc/evidence.sh
Best Practices Summary
Next Webcast
Informix Best Practices

• Disks and Database Space Layout
 – Thursday, March 30, 2017 at 2:00pm EST
• Backup, Recovery, and High Availability Disaster Recovery
 – Thursday, April 20, 2017 at 2:00pm EST

Please register for each webcast here at:
http://advanceddatatools.com/Informix/NextWebcast.html
Informix Resources - IIUG

• The International Informix User Group
 – http://www.iiug.org
 – Membership is FREE

• IIUG 2017 – The Premier Informix Event
 April 23 – 27, 2017
Informix Resources from IBM

- Informix Documentation

- Compare the Informix Version 12 editions by Carlton Doe, IBM

- The Informix and IoT Roadshows by Carlton Doe, IBM
Informix Training in 2017

• April 10-13, 2017
 – Informix for Database Administrators
• July 10-13, 2017
 – Advanced Informix Performance Tuning
• September 18-21, 2017
 – Informix for Database Administrators
• All courses can be taken online on the web from your desk or at our training center in Virginia.
• We guarantee to NEVER cancel a course and will teach a course as long as one student is registered!
Questions?

Send follow-up questions to lester@advanceddatatools.com
Informix Support and Training from the Informix Champions!

Advanced DataTools is an Advanced Level IBM Informix Data Management Partner, and has been an authorized Informix partner since 1993. We have a long-term relationship with IBM, we have priority access to high-level support staff, technical information, and Beta programs. Our team has been working with Informix since its inception, and includes 8 Senior Informix Database Consultants, 4 IBM Champions, 2 IIUG Director’s Award winners, and an IBM Gold Consultant. We have Informix specialists Lester Knutsen and Art Kagel available to support your Informix performance tuning and monitoring requirements!

- Informix Remote DBA Support Monitoring
- Informix Performance Tuning
- Informix Training
- Informix Consulting
- Informix Development

Free Informix Performance Tuning Webcast replays at:
http://advanceddatatools.com/Informix/Webcasts.html

Call: (800) 807-6732 x101 or Email: info@advanceddatatools.com
Web: http://www.advanceddatatools.com

Informix Best Practices
Thank You

Lester Knutsen
Advanced DataTools Corporation

lester@advanceddatatools.com

For more information:
http://www.advanceddatatools.com

Advanced DataTools